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TD 6 : Transposition, orthogonalité, et formes bilinéaires

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Soit K un corps. Sauf mention du contraire, tous les espaces vectoriels considérés seront des
K-espaces vectoriels.

Exercices importants

Exercice 1.
Soit E le R-espace vectoriel des suites réelles convergentes. Pour un entier n ⩾ 0, on définit

(en : u 7→ un) ∈ E∗. On pose enfin F (resp. G) l’espace engendré par les e2n (resp. e2n+1) pour
n ⩾ 0.

1. Calculer (F ∩ G)⊤.
2. Montrer que F ⊤ + G⊤ ̸= (F ∩ G)⊤.

Exercice 2. (Réduction et transposition)
Soit E un espace vectoriel de dimension finie et soit u ∈ End(E).

1. On pose coker(u) := E/Im(u). Montrer que (coker(u))∗ ∼= ker(tu).
2. (a) Soit F un sous-espace vectoriel de E. Montrer que F est stable par u si et seulement

si F ⊥ est stable par tu ∈ End(E∗).
(b) On prend K = C. Montrer que u admet un hyperplan stable.

3. (a) Montrer que P ∈ K[X] annule u si et seulement si P annule tu.
(b) Montrer que u et tu ont les mêmes polynômes caractéristique et minimal.
(c) En déduire que u est diagonalisable (resp. trigonalisable) si et seulement si tu est

diagonalisable (resp. trigonalisable). Exprimer une base de diagonalisation (resp.
trigonalisation) de tu en fonction d’une telle base pour u.

Exercice 3. (Décomposition en somme d’applications de rang 1)
Soient E et F des espaces vectoriels de dimension finie et soit u : E → F une application

linéaire.
1. Montrer qu’il existe w1, . . . , wk ∈ F et λ1, . . . , λk ∈ E∗ tels que pour tout x ∈ E,

u(x) =
k∑

i=1
λi(x)wi.

2. Montrer que l’entier k minimal tel qu’une telle écriture existe est le rang de u.
3. Soit (w1, . . . , wr) une base de Im(u). Montrer qu’il existe une unique famille (λ1, . . . , λr)

de E∗ telle que pour tout x ∈ E, u(x) =
r∑

i=1
λi(x)wi.

4. Montrer qu’avec ces notations, (λ1, . . . , λr) est une base de l’image de tu.
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Exercice 4.
Soit ϕ la forme bilinéaire de K2 définie par

K2 × K2 −→ K((
x1
x2

)
,

(
y1
y2

))
7−→ 2x1y1 − 3x1y2 + x2y2

1. Calculer la matrice A de ϕ dans la base B = (( 1
0 ) , ( 1

1 )).
2. Calculer la matrice A′ de ϕ dans la base B′ = (( 2

1 ) , ( 1
−1 )).

3. Calculer la matrice de passage P de B à B′ et vérifier que A′ = tPAP .

Exercice 5.
Soient E et F deux espaces vectoriels (pas forcément de dimension finie). Soit ϕ : E×F → K

une forme bilinéaire. Montrer que Lϕ et Rϕ sont des isomorphismes si et seulement si les
dimensions de E et F sont finies et égales et ϕ est non dégénérée.

Exercice 6.
Soient E et F deux espaces vectoriels non nuls de dimension finie, et soit ϕ : E × F → K

une forme bilinéaire.
1. Montrer que ϕ est non dégénérée si et seulement si pour toute application linéaire u ∈

End(E), il existe une unique application linéaire u∗ ∈ End(F ) telle que pour tout x ∈ E
et y ∈ F ,

ϕ(u(x), y) = ϕ(x, u∗(y)).
On appelle u∗, l’adjoint de u.

2. Soit u ∈ End(E). Vérifier que pour le crochet de dualité ⟨ , ⟩ : E × E∗ → K, l’adjoint de
u est tu.

3. On suppose ϕ non dégénérée. Prouver que
ker(u∗) = Im(u)⊥,ϕ, rg(u∗) = rg(u), et Im(u∗) = ker(u)⊥,ϕ.

4. On suppose ϕ non dégénérée. Soit e = (e1, . . . , en) une base de E et f = (f1, . . . , fn) une
base de F . On note M la matrice de ϕ dans les bases e et f et P la matrice de u dans la
base e. Montrer que la matrice de u∗ dans la base f est égale à M−1tPM .

Exercice 7.
Soient E et F deux espaces vectoriels et soit ϕ : E × F → K une forme bilinéaire. Soient

V1, V2 des sous-espaces vectoriels de E.
1. Montrer que (V1 + V2)⊥,ϕ = V ⊥,ϕ

1 ∩ V ⊥,ϕ
2 .

2. (a) Montrer que V ⊥,ϕ
1 + V ⊥,ϕ

2 ⊂ (V1 ∩ V2)⊥,ϕ.
(b) Montrer qu’il y a égalité si ϕ est non-dégénérée.

3. (a) Montrer que V1 ⊂
(
V ⊥,ϕ

1

)ϕ,⊥
.

(b) Montrer qu’il y a égalité si ϕ est non-dégénérée.

Exercice 8.
Soient E et F deux espaces vectoriels de dimension finie et soit ϕ : E × F → K une forme

bilinéaire.
1. Montrer qu’il existe une unique forme bilinéaire

ϕ : E/ ker(Lϕ) × F/ ker(Rϕ) → K

telle que pour tout x ∈ E, y ∈ F , ϕ(x, y) = ϕ(x, y).
2. Montrer que ϕ est non dégénérée.
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Exercices supplémentaires

Exercice 9.

1. Soit

E0 E1 · · · En−1 En
f0 f1 fn−2 fn−1

une suite exacte d’espaces vectoriels. On rappelle que cela signifie que pour tout i, Ei est
un espace vectoriel, fi : Ei → Ei+1 est une application linéaire et

ker(fi) = Im(fi−1).

Montrer que la suite duale

E∗
n E∗

n−1 · · · E∗
1 E∗

0
tfn−1 tfn−2 tf1 tf0

est exacte.
2. Soient E, F deux espaces vectoriels, et soit u : E → F une application linéaire. Retrouver

en utilisant des suites exactes les isomorphismes

ker(tu) ∼= coker(u)∗ et coker(tu) ∼= ker(u)∗.

Exercice 10.
Dans cet exercice, on ne suppose pas que K est de caractéristique différente de 2. Soit E

un espace vectoriel de dimension finie, et soit ϕ une forme bilinéaire sur E telle que pour tout
x, y ∈ E :

ϕ(x, y) = 0 ⇐⇒ ϕ(y, x) = 0.

1. On suppose tout d’abord que ϕ est non dégénérée.
(a) Montrer que pour tout x ∈ E, il existe λx ∈ K tel que Lϕ(x) = λxRϕ(x).
(b) En déduire qu’il existe λ ∈ K tel que Lϕ = λRϕ.
(c) Conclure que ϕ est symétrique ou alternée.

2. Démontrer que la conclusion est toujours vérifiée si ϕ est dégénérée.

Exercice 11. (Forme bilinéaire antisymétrique)
Soit E un espace vectoriel de dimension finie sur K, avec K un corps de caractéristique

différente de 2. Soit ϕ : E × E −→ K une forme bilinéaire antisymétrique.
1. Montrer que si dim E = 1, alors ϕ = 0.
2. Supposons dim E ⩾ 2 et ϕ ̸= 0. Montrer qu’il existe deux vecteurs indépendants u1, u2 ∈

E tels que

Mat(u1,u2)
(
ϕ|F

)
=
(

0 1
−1 0

)
,

où F = Vect (u1, u2).
3. Soit W = F ⊥,ϕ. Montrer que E = F ⊕ W .
4. En déduire qu’il existe une base de E telle que la matrice de ϕ soit diagonale par blocs,

avec des blocs de 0 et des blocs identiques à ceux de la question 3. En particulier, toute
forme bilinéaire antisymétrique est de rang pair.
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